全息光存储

编辑:语言网互动百科 时间:2019-12-16 17:03:05
编辑 锁定
本词条缺少概述名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
中文名
全息光存储
技    术
光存储技术
特    点
高存储容量、高存储密度
用    途
平面型记录材料

全息光存储百科名片

编辑
全息光存储实际上还是一种光盘存储技术,采用复用技术,可大幅度地提高 存储容量和系统性能。在各种未来高密度光存储技术中,全息光存储以其所具有的高存储容量、高存储密度、高信息存储冗余度和超快存取速度等优点一直为人们所重视。

全息光存储复用技术

编辑
存储中的复用技术是全息光存储所特有的技术特征,采用合理的复用技术可以有效地增加系统的存储容量,提高存储系统的性能。全息光存储中的复用技术主要包括空间复用、体积复用和混合复用三大类。
空间复用技术是将记录介质的二维平面划分成不同的区域,在每一个区域中单独存储一幅全息图。空间复用技术是发展得最早的复用技术,主要适合于平面型记录材料,存储材料中的存储格式类似于硬盘和光盘。空间复用技术的优点是:由于相邻的全息图在空间并不重叠,因此再现出的页面之间可以完全避免串扰噪声,每个全息图的衍射效率也都可以达到单个全息图所能达到的最大衍射效率。此外,由于存储的所有全息图都可以采用相同的参考光角度,因此系统的光路设计和构架相对简单。单纯空间复用技术的主要缺点是不能充分利用存储材料的厚度来增加系统的存储容量,因此没有充分利用全息存储技术的潜力实现最大存储容量。
为了弥补空间复用技术的缺陷,人们提出了体积复用技术。体积复用技术分为三种:角度复用、位相复用和波长复用。下面我们分别进行介绍。
角度复用:这是一种使用最早,研究最为充分的复用技术,它利用了体积全息图的角度选择性,使不同的信息页面可以互不相干地叠加在同一个空间区域内。每幅全息图在记录和读出时所采用的物光和参考光的夹角都各不相同,但采用的激光波长是固定的。对角度的调整可以通过旋转反光镜或声光偏转器来实现。角度复用技术可以有效地增大存储容量,提高存储密度。但角度复用存储的全息图数目越多,平均衍射效率就越低,并且由于串抗干扰的叠加将导致读出数据的信噪比下降,这些因素也影响和限制了角度复用技术可以实现的存储容量。
位相复用:为了克服角度复用技术串扰噪声较大的缺点,人们又提出了正交位相编码复用技术。在这种复用技术中,参考光的波长和光束角度都是固定的,而位相编码一般使用确定性位相编码中的正交位相编码。正交位相编码的概念是——每个全息图的参考光都是由一组平面波束的集合组成,对其中每个光束都进行纯位相调制,即相对位相延迟非0即π。每组这样的光束集合代表一个存储图像的地址,且和其它所有地址都正交。读出信息时,只有该地址参考光束对应的全息图的衍射效率最大,而对于其它全息图则是相消干涉,理论上其衍射效率均为零。因此,位相复用技术可以提高读出过程中全息图的衍射效率,增加读出数据的信噪比,并且可以使对存储数据的寻址通过改变光束的位相而不是改变光束的方向来实现,从而使寻址过程更快。
波长复用:由于全息图的再现对读出光的波长也十分敏感,所以波长复用也是全息光存储的主要复用方式之一。波长复用也是基于全息光存储所具有的布喇格角选择性,只是此时每幅存储的全息图是与一个特定的光源波长相对应,记录和读出过程中参考光和物光之间的夹角保持不变。
最后,谈谈混合复用技术。混合复用技术就是将上述几种复用方法结合使用,以便充分利用各种复用方法的优点,提高系统的存储容量。主要的几种混合复用技术包括稀疏波长—角度复用、空间—角度复用以及空间—位相复用等等,在此不再赘述。
此外,随着技术的发展,人们又提出了一些新型的复用技术。例如,1999年V.Markov等人提出的静态散斑复用技术;2001年,清华大学提出了利用全息光存储系统中随机相位极自身位移产生的动态散斑实现的动态散斑复用技术等。相信随着科技的不断进步,会有更多优秀的复用技术得到开发和应用,从而可以更加充分地发掘全息光存储的存储潜力,实现大容量、高密度的数字存储。

全息光存储编码技术

编辑
全息光存储的目标是要实现超大存储容量、超高存储密度和超快存取速度的数字信息存储,然而如果不采取有效的信号处理方法来抑制其记录通道中存在的各种各样噪声,将导致读出数据的误码率上升,系统的存储容量下降。
全息光存储是一个有噪声的数据记录通道。研究表明,选择不同的存储材料、系统配置、复用技术以及并行数据访问方案会导致全息光存储系统记录通道中主导噪声的特征发生变化。噪声按照来源分可以分为系统噪声和非系统噪声(全息图噪声),按噪声的特征分布可分为固定模式噪声和随机噪声,按照全息图的过程又可分为光通道噪声和电通道噪声。例如,系统噪声源主要包括光学系统未准直导致的噪声、CCD与SLM在纵轴方向的旋转、放大率误差、透镜的相差、SLM、存储介质、透镜和CCD的缺陷、对SLM和介质的不均匀照射、光致电压损耗、页间串扰和页内串扰等等导致的噪声;而非系统噪声源主要包括光电检测器和读出电子电路的热噪声,光散射噪声,相干散射噪声和散斑噪声等。
电噪声是一种加性噪声,其统计特性服从高斯分布。采用光盘存储中使用的一维里德-所罗门码限(Reed-SolomON,缩写为RS码)可以使原始误码率从10-3下降到10-12,从而满足用户对数据误码事的要求。基于全息光存储中数据页对于传输的要求,人们对于RS码用于并行错误纠正进行了研究,光通道中的噪声往往都是突发性的,基于页的二维匹配交错方法可使突发错误分散,获得良好的纠错效果。
将数字数据流调制为空间光调制器上的光强度变化,并使其最大限度地适应光通道的传输特性,称作调制编码或者通道编码。全息光存储中常使用的调制编码包括差分编码、等重码、局部响应预编码、灰度级编码以及具有水平和垂直奇偶校验特性的阵列码。对于差分码的检测判决时,利用其内在隐含的局部门限,依次对CCD转换的两位“模拟”数据比较其大小,然后做出0与1的正确判决,但差分码的编码效率仅为1/2。从研究进展来看,阵列码最有可能在全息光存储中得到应用。
在全息光存储系统中可以采用光信号处理技术也可以采用电信号处理技术,当然也可以同时采用两种信号处理技术。光信号处理技术由于具有内在的并行性,因此速度很快,但是系统的复杂性和成本也相应增加;电信号处理技术相对比较成熟,但是速度比较慢。为了减少读取数据时电通道的瓶颈,可从光电转换开始将一个检测阵列分成多块,实行并行处理以匹配光通道的速度。

全息光存储发展前景

编辑
与当前的硬盘、光盘存储以及下一代的高密度光存储技术相比,全息光存储的巨大竞争力体现在它所具有的超大存储容量、超高存储密度和越快的存取速度等方面。全息光存储的研制目标就是希望能够实现TB量级的存储容量和1Gbps的数据传输率。随着人们在关键器件研发和新型存储材料研制方面取得的巨大进步,这一目标的实现并非遥不可及。事实上,Inphase公司和Optware公司已经在这一领域中迈出了坚实的步伐,取得了令人瞩目的成就,同时更在全息光存储商品化的进程中取得了极大的进展。
当然,全息光存储的发展也还存在着诸多的难题,首当其冲的就是必须寻找一种同时兼具性能、容量和价格方面综合优势的存储材料,这也是全息光存储发展过程中必须解决的关键问题之一。其次,从加工生产方面来看,如何以较低的生产成本实现加工,特别是有关激光、空;和光调制器和探测器阵列的对准,对于工程人员来说依然是一个巨大的挑战。最后,要实现合适的性能价格比,全息光存储如果不够便宜,就难以找到市场,普通的PC机用户不会为了性能上一定的改善而付出高额的费用。因此,全息光存储只有在其价格降到一个合理的水准,才能够在竞争激烈的市场上站住脚。
我们相信随着技术的发展,在不久的将来,人们终究会找到解决这些问题的方法,全息光存储也会走进千家万户,满足人们对于信息存储容量永无止境的需求。
词条标签:
计算机术语 计算机学